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A Weighted Least Squares Approach to Robustify

Least Squares Estimates

ABSTRACT

This study develops a robust linear regression technique based on the idea of the

Weighted Least Squares. In this technique, a subsample of the full data of interest is

drawn, based on a measure of distance, and an initial set of regression coefficients are

calculated. The rest of the data points is then taken into the subsample, one after another,

and a weighted least squares procedure is perform each time a new data point is brought

in, until all data points are included. The weighted average and standard errors of the

regression coefficients from all iterations are calculated and compared with those from

OLS, and two other robust techniques. It is shown that the technique developed in this

article performs better than LAD and at the same level with LMS. The simplicity of this

technique, however, seems to justify its use over the LMS.



One of the assumptions of an Ordinary Least Squares regression is the homogeneity of

error variances. When this assumption is violated, error variances within all levels of the

same independent variable(s) are not equal. In such a situation, differential weight, with

weight being the inverse of the error variances, is often assigned to each case and then a

Weighted Least Squares regression is performed.

Let Y, be the value of the dependent variable for the ith observation, be the jth

dependent variable of the ith observation. Further, let b., be the regression coefficient for

the jth independent variable, and e, be the error for the ith observation. Then the

regression equations can be expressed in the following manner:

Y, = 1,Xub, + e, (la)

where i : 1, 2, 3n;

j 1, 2, 3,

or equivalently,

( 1 b)

where Y = Y, e, is the predicted value for the ith observation.

In an Ordinary Least Squares procedure, the regression coefficients are solved from the

following equation, in matrix form:

jx1 (A- x)-1Jx, (xi y) jx1 (2)

3

The regression coefficients (elements in the j by 1 matrix) solved from equation 2

minimize the sum of squared errors, DY, , where k, is the predicted value for the

ith observation.

In a Weighted Least Squares approach, however, the regression equations are expressed

as:

4
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= w, bj + wi e, (3a)

where i : 1, 2, 3, ,n;

j 1, 2, 3, 49;

wi: weight assigned to the ith observation.

or

=IW,Xobj

The weighted regression coefficients are solved from the following equation, again in

matrix form:

P jxl = (X' vix),.1 J(X wY ),.1 (4)

where w is an i by i diagonal matrix with w(i, i) being the weight for the

ith observation.

The regression coefficients from equation (4) minimize the sum of weighted squared

errors: 1,w (Y;

The Weighted Least Squares (or WLS) approach thus can reduce any particular data

point's influence on the regression line (or surface) by assigning a smaller weight to it, or

can increase any particular point's influence by adding more weight to it. (An Ordinary

Least Square Approach, however, assigns unit weight to each observation.) In fact, many

of the robust regression techniques, in which the influence of some extreme points are

reduced to a certain degree, have utilized this idea and found satisfactory ways of

determining the appropriate weights.

The Determination of Weights

5
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Almost all of the parametric robust regression procedures determine weights by

consideration of some distances, or errors. One gets an initial estimates of the regression

coefficients, obtains the errors, and determines the weight based on some function

(usually the inverse) of the errors. One then iterates the regression procedure in a

weighted manner until the errors converges to a certain small value.

This procedure looks simple, but many issues need to be resolved to reach a

satisfactory final solution. A major consideration is about the initial estimates. What

should be the initial estimates? How would one calculate them? If the Ordinary Least

Squares solution is used to serve as the initial estimates, then it is not robust to start with.

It might be desirable to start the iteration by using some robust estimates, such as the

Least Absolute Deviation solution.

One then has to decide the means of calculation of errors. They could just be the

differences between the predicted values and the observed values for each observation.

However, how to make use of these errors poses another question. In finding appropriate

weights, Huber's M-estimators are obtained by standardizing the errors by a robust

estimate of the standard error, and by giving differential weights based on the

standardized errors. For example, one of the M-estimators gives weights to observations

on the following manner:

, if 1 ril < 1.5;

, otherwise.

where r, is the "standardized residual for the ith observation.

(5)

There are other different schemes of assigning weights. Refer to Holland and welsch

(1977) for some summary information.

This family of the M-estimators suffers from a low breakdown. In fact, Rousseeuw

and Leroy (1987) have pointed out that the M-estimators have as low as a 0% breakdown

6
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(p.149), which means that even a single outlier can arbitrarily change the regression

line/surface.

The programming effort involved in obtaining the M-estimators also contributes to the

infrequent use among researchers in education. Many of the statistical packages, such as

SPSS, SAS, and MINITAB, do not have a built-in routine to accomplish a robust

regression procedure.

Other procedures have also been developed, such as the Least Median of Square

procedure (Rousseeuw and Leroy, 1987), and the Minimum Volume Ellipsoid method

(Rousseeuw and Zomeren, 1990). An MVE approach utilizes the variance-covariance

matrix to define an ellipse (for bivariate datasets) or ellipsoid (for more than two

dimensional datasets) that is the smallest in volume among those that contain at least 50%

of the actual data point. Hawkins (1993) has proposed a feasible set algorithm (FSA) for

solving efficiently the regression coefficients of an MVE solution. His method, however,

requires knowledge on linear programming, which is unfamiliar to many of the data

analysts in an educational setting.

The Iterative Expanding Reweighted Least Squares Regression Procedure

This paper blends the idea of defining an ellipse/ellipsoid and the idea of a Weighted

Least Square approach, and proposes an Iterative Expanding Reweighted Least Square

Regression technique to robustify a linear regression procedure. Let X be the combined

matrix of both the independent variables and the dependent variable. Let X, be the ith row

vector (observation). And let X, be the jth variable in that row, If be the mean vector of

the jth column (variable). Finally, let S2 be the variance-covariance matrix. An Ellipsoid

can then be expressed in the following way:

(Xy TX) (S2)-1(Xu < C, (6)
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It turns out that the left-hand side of the above inequality is the "distance" between a

particular data point to the centroid (A71, :172 ,73,......1137) of an ellipsoid, taking into

account the correlation among variables. Choosing a specific C value will form an

Ellipsoid enclosing points whose distances from the centroid are no greater than C.

Apparently, every data point has a distance value. If points are sorted, with ascending

distance, then the first 50% (with the lowest distance measures) of the full data set should

be a good representation of the whole set of data. (In their research, Rousseeuw and

Leroy have indicated a similar one-step improvement over the Ordinary Least Squares by

assigning unite weight to points within the ellipsoid defined by equation (6) and zero

weight to the rest of the points, and do an ordinary regression.) An initial regression

surface can be obtained by using this subsample of the 50% data points. After the initial

regression surface is obtained, errors (the difference between the observed value and the

predicted value for the dependent variable) can be calculated; and points are again sorted

by the absolute amount of errors, with an ascending order. The first 50% of the data

points (with the lowest absolute errors) plus the next lowest, forms the starting set of

data points that can be used to obtain the regression coefficients at iteration one.

It should be noted that since points are sorted based on some measure of errors, those

that with a smaller error should have more weight than those with larger errors. The

weight for each point is defined as:

w, =1, if the point is in the lower half with smaller errors; (7)

1

otherwise.
(1 -1-ierro4)'

(Note that the error in (7) is the initial error, and weights are defined once only, after the

first iteration which includes n/2 data points.)

Then a weighted least squares is performed with the (n/2 + 1) data points [or (n +1)/2 if

the number of data points in odd], and regression coefficients stored. The program will

NE S1 CDR- AVALSLE
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search for the next data point on the list and add it into the (n/2 + 1) points, with weights

being assigned by (7). (However, weights in (7) are rescaled each time so that for each

individual iteration, the sum of weights of included data points will be the number of data

points included.) The observed regression coefficients are again stored. This program

then goes to the next point, adds it in the model, and recalculates and stores the regression

coefficients. Therefore, there will be n/2 [or (n/2+ 1)] sets of regression coefficients. The

first set contains either (n/2+ 1) or (n+ 1)/2 data points, the final set contains n data

points.

After all sets of regression coefficients are obtained, the "overall" regression coefficients

are calculated as the weighted average of the previously obtained regression coefficients,

with the weight being the number of data points used at each iteration. Therefore, the

first set of the regression coefficients will have a weight of (n/2+ 1) or (n+ 1)/2, and the

final set will have a weight of n.

If we let b., be the "overall" weighted average (for the jth independent variable) of the n/2

or n/2+ 1 sets of regression coefficients; w,k the rescaled weight at the kth iteration for

the ith data point, and bik be the estimate of the jth independent variable at the kth

iteration, then we can write:

147 b k
b = , where (8a)

wik xn
WI = , updated at each iteration.

2,w
i k

(8b)

The standard error of the regression coefficients can also be obtained via the weighted

manner:



1,(nkb.,
nkb.k

S.E.h =111E nk

Lnk

9

where nk is the sample size at the kth iteration,

and bik as defined in (8a).

(9)

The model standard error can be obtained by the following equation, using the overall

average regression coefficients and the weights at the final (the n/2 th) iteration:

Ewfri f,)2sE.mode,_ ,: , with no intercept; orzdw; p

lilE:07
f )2iv

s.E.model = , , ' . ' ' , with an intercept.
2., w, p-1

Algorithm for an Iterative Expanding Reweighted Least Squares

Step 1. Input the data matrix, which includes the dependent and independent

variables.

Step 2. Calculate the distance measure by using equation

Distance = (Xy 2 I (Xu (1 1 )

Step 3. Sort points on the ascending order on the distance.

Step 4. Select half of the points with the shortest distance measures as the base and

perform an Ordinary Least Squares regression.

Step 5. Calculate the unstandardized errors for all data points based on the regression

coefficients obtained in step 4.

Step 6. Sort errors from Step 5 on the ascending order of their magnitudes,

C
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irrespective of the signs.

Step 7. Calculate weight associated with each data point via equation (7). The first

50% of the data points will have an initial weight of 1.

Step 8. Select the first n/2+ 1 or (n+ 1)/2+ 1 points, depending on number of

observations one has. This is the start-up working dataset.

Step 9. Rescale the weight so that the sum of weight is th number of data points at this

iteration.

Step 10. Perform a weighted least squares regression and store the regression coefficients.

Step 11. If all data points are in the working dataset, go to Step 13. Otherwise, add

the point that is next on the list (with the next smallest error) to the working

dataset.

Step 12. Go to Step 9.

Step 13. Calculate the weighted mean, as well as the standard error, for each

regression coefficient.

Step 14. Calculate the model standard error via equation (10), using the resealed

weight.

Step 15. Output regression coefficients and standard error and the model standard

error.

Step 16. Exit.

Empirical Runs of the Iterative Expanding Reweighted Least Squares Regression

Procedure

Five different datasets are used to run the IERLS procedure, and results are compared

with those obtained via the Ordinary Least Squares, the Least Median of Squares, and the

Least Absolute Deviation approaches. The five datasets are: the salinity data (Rupport

and Carroll, 1980), the air quality data as used by Rousseeuw and Leroy (1984), the

Al
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stackloss data (Brownlee, 1965), the Coleman data (Mosteller and Tukey, 1977) and an

artificial data set from Hawkins, Bradu and Kass (1984).

The solutions from LMS can be found at Rousseeuw and Leroy (1984). The OLS is

performed with an SPSS routine. The other two programs, for the reweighted and the

LAD, are written in the FORTRAN-77 code and are available from the authors. Several

subroutines in IMSL are used to complete the IEWLS program. The RLAD subroutine is

used to calculate the Least Absolute Deviation solutions for a linear regression. It is

shown that this proposed reweighted procedure does have the desired ability to detect

multivariate outliers where the OLS and LAD both perform less satisfactorily.

The Stack loss data:

The Least Medium of Squares identifies cases 1, 2, 3, 4 and case 21 as outliers. The

Iterative Expanding Reweighted Least Weighted Squares identifies cases 1, 3, 4 and case

21 as outliers. The above two identify outliers as those whose standardized

(Residual./Scale) residual is larger than 2.5 in magnitude. Judged somewhat subjectively,

by the authors, on the magnitude of the unstandardized errors, the Least Absolute

Deviation identifies cases 1, 3, 4, 21 as outliers. As shown in table 6, an OLS procedure

is unable to detect any of the outliers identified by the above robust techniques.

The Salinity data:

The Least Median of Squares identifies cases 5, 8, 16, 23 and case 24 as outliers. The

Iterative Expanding Reweighted Least Weighted Squares identifies cases 1, 5, 8, 9, 15, 16

and case 17 as outliers. The Least Absolute Deviation identifies cases 16 as an outlier.

However, for comparison purposes 6 other cases with largest residuals are also undelined

(see table 7). Table 7 also indicates that the OLS procedure is nonrobust with regard to

this data set. It identifies no data points as outliers.

12
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The Air Quality data:

The Least Median of Squares identifies case 30 as the single outlier. The Iterative

Expanding Reweighted Least Squares has identified cases 1, 4, 9, 21 and 30 as outliers,

with case 30 being much more extreme than the other 4 points. LAD suggests case 30 as

the only outlier. The OLS procedure has case 30 as the outlier, but with a much less

standardized residual than that obtained by the IERLS procedure.

The Hawkins et.al., data:

The Least Median of Squares and the Iterative Expanding Reweighted Least Squares

both successfully identify the ten outliers in this artificial data set. The LAD, however,

fits poorly for this data set. It fits case 5, an outlier, perfectly; yet cases 11, 12, 13 and

14 are identified as outliers. However, it also fails to identify the first 10 cases. This is

an example of the "masking" effect, in which outlier cluster together so any single one of

them, taken separately, does not appear to be an outlier.

The Coleman data:

The Least Median of Squares has cases 3, 17 and 18 as outliers. The Iterative

Expanding Reweighted Least Squares identifies cases 3 and 18 as outliers. The Least

Absolute Deviation identifies cases 3 and 18. Again, the OLS procedure fails to detect

any outliers from this data set.

I
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Discussion

OLS performs the worst with respect to the identification of outliers. This is to be

expected since the quantity it minimizes gives undue weight to outlying observations.

The LMS and IERLS perform more consistently with each other across different data

sets, although there is minor inconsistency between them. The performance of an LAD

procedure is somewhat unreliable. In the Hawkins et.al., data, it even gives a perfect fit to

an oitlier, which is undesirable.

Also, the standard errors from an IERLS are much less than an LMS procedure. The

standard errors from an LAD or an LMS procedure are not listed, but it is believed that

the reweighted procedure will yield the lowest standard errors, due to the way weights are

assigned.

While the LMS is also well recognized as one of the standard robust regression

technique, it requires more programmming background. However, this reweighted

procedure only requires that researchers have the knowledge of an WLS solution.

Therefore, it seems to suggest that more consistent estimates are likely obtained by using

the IERLS procedure.

14
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Recommendations

Several directions of further investigations may be of interest with respect to this new

robust regression procedure.

First, a more comprehensive simulation study is needed to determine how this

procedure will fare in various contaminating conditions. Also, the breakdown point of

this procedure is yet to be determined.

Second, it seems reasonable to apply this reweighting scheme to other parametric

procedures. For example, to calculate the correlation coefficients among several variables,

it is possible to select first a small set of points based on the criteria mentioned in this

paper, then expand and calculate the correlation coefficient at each iteration in a weighted

manner, and finally calculate the weighted mean of these correlation coefficients as the

"robust" correlation coefficient.

Third, it would be instructive to calculate the ordinary regression coefficients without

those data points identified by the IERLS as outliers. it is expected that the "trimmed"

data will yield regression coefficients not much different from the "untrimmed" ones.

Fourth, the sampling distribution of the regression coefficients obtained by IERLS is

unknown. This paper gives a preliminary estimate of the standard errors, both for the

coefficients and for the model. It seems that the standard errors obtained this way are

very liberal.

15
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Table 1. Regression Coefficients and Standard Errors for
the Stackloss data*:

OLS IERLS

b0 -39.92 (11.90) -33.30 (1.57)
bl .72 (.14) .75 (.03)

b2 1.30 (.37) .52 (.07)

b3 -.15 (.16) -.07 (.02)

model (3.24) (1.72)

LMS LAD

17

b0 -34.5 -39.69
bl .71 .83

b2 .36 .57

b3 0.00 -.006

*: Standard errors for LMS and LAD are unavailable.

le



Table 2. Regression Coefficients and Standard Errors for
the Salinity data*:

OLS IERLS

b0 9.59 (3.13) 19.78 (.47)

bl .78 (.09) .72 (.01)

b2 -.03 (.16) -.16 (.02)

b3 -.30 (.11) -.69 (.02)

model (1.33) (.48)

18

LMS LAD

b0 36.7 14.21
bl .36 .74

b2 -.07 -.11
b3 -1.30 -.46

*: Standard errors for LMS and LAD are unavailable.



Table 3. Regression Coefficients and Standard Errors for
the Air Quality data

OLS IERLS

b0 -69.66 (45.94) -70.12 (5.31)
bl -.02 (.04) .004 (.002)
b2 -2.19 (1.15) 2.27 (.31)
b3 1.84 (.67) .97 (.10)

model (18.33) (7.01)

LMS LAD

b0 -37.52 (28.95) -46.77
bl .01 (.02) -.002
b2 -.75 (.71) -.79
b3 .99 (.43) 1.18

19

^: Standard errors for LMS and LAD are unavailable.



Table 4. Regression Coefficients and Standard Errors for
the Hawkins et.al., data*'**:

OLS IERLS

b0 -.39 (.42) -.13 (.15)
bl .24 (.26) .18 (.03)
b2 -.33 (.16) -.05 (.04)
b3 .38 (.13) -.08 (.08)

model (2.25) (1.59)

20

LAD

b0 -.88
bl .10
b2 .15
b3 .22

* : Standard errors for LAM and LAD are unavailable.
** : Regression Coefficients for LMS are unavailable.



Table 5. Regression Coefficients and Standard Errors for
the Coleman data*:

OLS IERLS

b0 19.95 (13.63) 20.68 (4.28)
bl -1.79 (1.23) -1.96 (.15)
b2 .44 (.05) .05 (.02)
b3 .56 (.09) .65 (.01)
b4 1.11 (.43) 1.24 (.04)
b5 -1.81 (2.03) -2.56 (.70)

model (2.07) (1.18)

21

LMS LAD

b0 29.75 29.21
bl -1.20 -1.73
b2 .08 -.006
b3 .66 .67
b4 1.10 1.12
b5 -3.90 -3.55

*
: Standard errors for LAM and LAD are unavailable.



Table 6. Residuals associatd with various regression fits,
Stackloss data*

ID NZ ZRE_1 LAD LMS

1 3.637 .997 5.06 >7
2 .678 -.591 .00 >3
3 3.799 1.405 5.43 >6
4 4.702 1.757 7.64 >7
5 -.377 -.528 -1.22
6 -.739 -.927 -1.79
7 -.178 -.737 -1.00
8 .403 -.428 .00
9 -.654 -.969 -1.46

10 .175 .391 -.02
11 .689 .813 .53
12 .414 .857 .04
13 -1.452 -.440 -2.90
14 -.604 -.016 -1.80
15 .860 .728 1.18
16 .108 .279 .00
17 -.474 -.469 -.43
18 -.074 -.140 .00
19 .202 -.184 .49
20 1.059 .435 1.62
21 -4.819 -2.232 -9.48 <-5

22

*: NZ is the "standardized residual" from the iterative
procedure. ZRE_1 is the standarized residual from an OLS
run. LAD, however, is the raw score difference between the
actual values and predicted values for the dependent
variable. Values underlined are those that are likely to be
outliers. For the LMS residuals (standardized), only those
identified as outliers are shown.

23



Table 7. Residuals associatd with various regression fits,
Salinity data*

ID NZ ZRE_1 LAD LMS

1 -3.188 -1.107 -1.70
2 -.565 -.470 -.65
3 -1.182 -.805 -1.23
4 .812 .249 .00
5 3.710 -.229 .33 >8
6 .704 .181 .00
7 1.156 .458 .35
8 -3.345 -.949 -1.59 <-4
9 3.455 1.753 1.71

10 -.073 -.144 -.36
11 -1.668 -1.137 -1.40
12 -.909 -.134 -.50
13 2.735 1.238 1.32
14 -1.318 -.556 -.80
15 -5.021 -1.854 -2.70
16 12.996 2.045 4.01 >20
17 -4.540 -2.003 -2.68
18 .818 .523 .31
19 .418 .802 .36
20 -.709 .160 -.29
21 .774 .687 .51
22 -.188 .200 .00
23 1.573 -.087 .03 >6
24 .544 -.601 -.55 >6
25 .323 .218 .00
26 -.256 .338 .00
27 .093 .479 .22
28 1.687 .746 .81

23

*: NZ is the "standardized residual" from the iterative
procedure. ZRE_1 is the standarized residual from an OLS
run. LAD, however, is the raw score difference between the
actual values and predicted values for the dependent
variable. Values underlined are those that are likely to be
outliers. For the LMS residuals (standardized), only those
identified as outliers are shown.

24
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Table 8. Residuals associatd with various regression fits,
Air Quality

ID

1

2

3

4

7

8

9

12
13
14
15
16
17
18
19
20
21
22
23
24
28
29
30
31

data*

NZ

4.517

ZRE_1

.865
-.404

-1.338
.209

-.178
.648
.527

-.869
-.870
-.718
.592

-.192
.734
.669
.269

-.628
-.904
-.663
-.926
.936

-.228
.125

3.023

LAD

20.47

LMS

3.08

2.136
-2.730

4.03
-18.65

.210
1.179
.277

-3.135

.87

.00
7.00
-1.45

-10.91
-12.72
-10.75

6.67
-5.47
12.53

.00
5.78

-7.87
-14.36
-15.09

-.697
-.833

-1.126
.439

-.670
1.760

-2.399
1.004
-.310

-1.273
-3.725
-1.153
2.269
.078
.331

12.891

-13.71
16.20

.00
8.01

73.03
1.791 -.679 .00

*: NZ is the "standardized residual" from the iterative
procedure. ZRE_1 is the standarized residual from an OLS
run. LAD, however, is the raw score difference between the
actual values and predicted values for the dependent
variable. Values underlined are those that are likely to be
outliers. For the LMS residuals (standardized), only those
identified as outliers are shown.
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Table 9. Residuals associatd with various regression fits,
Hawkins et.al.,

ID NZ

data*

ZRE_1 LAD LMS

1 7.038 1.495 .55 >14
2 7.417 1.768 .74 >14
3 7.498 1.329 .42 >14
4 7.131 1.234 -.52 >14
5 7.388 1.354 .00 >14
6 7.216 1.518 .47 >14
7 7.766 1.995 1.24 >14
8 7.464 1.698 1.06 >14
9 7.187 1.200 -.26 >14

10 7.356 1.348 .38 >14
11 1.160 -3.478 -11.55
12 .984 -4.158 -12.12
13 1.628 -2.725 -10.83
14 1.618 -1.711 -12.55
15 -.362 -.298 -.73
16 .193 .378 .79
17 .019 .287 .40
18 -.031 -.176 -.01
19 .226 .288 .12
20 .197 .145 .00
21 .517 .296 .79
22 .422 .414 .25
23 -.536 -.194 -.63
24 .475 .598 1.00
25 -.199 -.133 .40
26 -.296 -.215 -1.04
27 -.514 -.614 -1.13
28 .190 -.106 .46
29 .204 .176 .76
30 -.055 -.558 -.37
31 -.177 -.123 .16
32 -.134 .245 .01
33 -.294 -.052 -.65
34 -.368 -.297 -.01
35 .141 -.180 -.12
36 -.471 -.520 -1.14
37 -.084 -.100 -.74
38 .528 .554 1.42
39 -.538 -.564 -.28
40 -.166 -.010 -.23
41 -.176 -.490 -.41
42 -.228 -.476 -.58
43 .600 .762 .78

44 -.391 -.796 -.75
45 -.415 -.338 .06



ID

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75

NZ

-.212
-.784
-.011
.469

-.178
.330

-.531
.664
.510
.147
.087
.376

-.072
-.075
-.309
.103
.378

-.135
-.315
.387

-.410
-.418
.505
.016
.622
.150
.026
.463

-.335
.315

ZRE_1

-.629
-.668
-.386
.286

-.307
.390

-.517
-.044
.756
.321
.342
.276
.117

-.328
-.593
-.008
.308
.285

-.398
-.127
-.117
-.217
.245
.085
.212
.005
.062
.199

-.171
-.148

LAD

-.41
-.49
-.20
.70

-.77
1.05
-.28
.78
.96
.28
.13

1.16
-.28
-.53
-.98
-.62
1.32
.03

-.96
.61

-.48
-.53
1.24
.74
.53

.00

.00

.52

-.70
.43

LMS

>2.5

26

*: NZ is the "standardized residual" from the iterative
procedure. ZRE_1 is the standarized residual from an OLS
run. LAD, however, is the raw score difference between the
actual values and predicted values for the dependent
variable. Values underlined are those that are likely to be
outliers. For the LMS residuals (standardized), only those
identified as outliers are shown.
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Table 10. Residuals associatd with various regression fits,
Coleman data*

ID NZ ZRE_1 LAD LMS

1 .078 .168 .00
2 .661 -.169 .00
3 -3.800 -1.904 -3.98 -4.04
4 -.939 -.228 -.58
5 .555 .376 .52
6 .203 -.041 .00
7 -.002 .347 .23

8 -.136 -.209 -.45
9 -.093 .301 .00

10 .058 .101 .00
11 -.431 -1.064 -.76
12 1.527 .842 .88
13 -.928 -.506 -1.44
14 .132 -.167 .31
15 .068 -.858 .00
16 .837 .625 1.30
17 -.939 -.694 -1.18 -2.82
18 5.627 2.411 6.80 5.76
19 .425 .541 1.34
20 -.294 .127 -.03

*: NZ is the "standardized residual" from the iterative
procedure. ZRE_1 is the standarized residual from an OLS
run. LAD, however, is the raw score difference between the
actual values and predicted values for the dependent
variable. Values underlined are those that are likely to be
outliers. For the LMS residuals (standardized), only those
identified as outliers are shown.
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